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INTRODUCTION 

Background of the Challenge 

The agricultural sector is fundamentally dependent on accurate and timely weather 

information. Weather conditions such as temperature, dew point, wind speed, 

precipitation, and humidity critically influence critical operational decisions. Farmers 

and agricultural managers utilize forecasts to determine when to plant seeds, irrigate 

crops, apply fertilizers and pesticides, or schedule harvests. Even slight 

improvements in forecast accuracy can translate into significant economic and 

environmental benefits. For instance, accurate temperature and dew point forecasts 

can help farmers anticipate frost conditions and protect crops more effectively. 

Similarly, predictions of wind speed can guide irrigation and pesticide spray 

schedules, reducing chemical drift and wastage. 

However, producing accurate local forecasts is an ongoing challenge. Global 

weather models, while advanced, often operate at resolutions of tens of kilometers, 

which is insufficient for capturing local microclimates. Traditional solutions like 

building proprietary weather stations for hyper-local conditions often struggle with 

data limitations or lack of integration with global atmospheric patterns. This results in 

suboptimal decision-making and missed opportunities to optimize yields, reduce 

environmental impacts, and enhance resilience to weather extremes. 

Scope of the Effort 

The project aims to combine data from local weather stations, global weather 

models, and historical reanalysis products to develop an advanced modeling 

framework capable of delivering highly accurate local forecasts. Specifically, the 

effort focuses on 24-hour lead-time predictions for key parameters—temperature, 

dew point, and wind speed—over carefully selected stations in the Czech Republic. 

The methods explored include a variety of machine learning (ML) models such as 

Multilayer Perceptrons (MLPs), Long Short-Term Memory (LSTM) networks,  
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CatBoost gradient boosting, and exploratory Bayesian Neural Fields. These 

techniques are integrated with global forecast model outputs from the Global 

Forecast System (GFS) and enhanced through reanalysis data sets like ERA5-Land. 

By leveraging state-of-the-art ML methods and data fusion techniques, this project’s 

objective is to push the boundaries of forecast accuracy at the local level. The 

implications extend beyond the Czech Republic, serving as a blueprint for other 

regions and microclimates. Ultimately, this integrated approach is intended to help 

farmers better manage their resources, reduce operational costs, increase crop 

resilience, and support sustainable agricultural practices. 

 

METHODOLOGY 

Team Description and Coordination 

The initiative was driven by a multi-institutional consortium blending academic, 

industry, and applied meteorology expertise. The core team at the Faculty of 

Information Technology, Czech Technical University in Prague, provided the 

computational infrastructure, domain modeling expertise, and algorithmic innovation. 

Experts from CIIRC furnished the project with operational perspectives, in-field data 

logistics, and continuous feedback loops. The collaboration ensured that research 

efforts were aligned with practical needs, enabling iterative refinements that bridged 

the gap between theoretical modeling and real-world agricultural decision-making. 

External partnerships included sporadic consultations with meteorological agencies, 

reanalysis data providers, and subject-matter experts in agriculture and climatology. 

These interactions guaranteed adherence to best practices, improved understanding 

of data peculiarities, and ensured that the methodology remained state-of-the-art. 

Technical Background 

Global-scale numerical weather prediction models (like GFS) provide a robust 

starting point for large-area forecasts but suffer from limited spatial resolution and 

inherent uncertainties. Local weather stations, while precise, only measure 

conditions at a single point location. The key challenge is how to scale from a coarse 

global grid to a highly localized prediction. Reanalysis data sets (e.g., ERA5-Land) 

provide a retrospective, physically consistent representation of the atmosphere and 

land surface, offering enhanced accuracy and resolution that can serve as a quality 

benchmark or training reference. 

Machine learning methods excel at integrating multiple data sources and capturing 

complex, nonlinear relationships. Techniques range from tree-based models (like  



                                                                       

trans4num INSPIRE Hackathon 2024 - Final Report on Challenge Nr. 4    

 

CatBoost) to sophisticated neural networks (MLPs, LSTMs). Additionally, recent 

advances in probabilistic modeling—such as Bayesian Neural Fields—allow for 

encoding uncertainty and continuous spatial dependencies, potentially improving 

trust and interpretability of local forecasts. 

Description of the Process of Solution 

1. Data Integration and Preprocessing: 

○ Local Data (HadISD): Hourly records from 27 selected stations in the 

Czech Republic provided ground-truth local measurements. Variables 

included temperature, dew point, wind speed, precipitation totals, cloud 

cover, and pressure. 

○ Global Data (GFS): Global Forecast System data were aligned with 

station coordinates. For each station, GFS predictions relevant to the 

next 24 hours were extracted. This provided a suite of coarse 

predictors representing large-scale atmospheric conditions. 

○ Reanalysis Data (ERA5-Land): While ERA5-Land is not available in 

real-time, it represents an accurate, high-resolution baseline. ERA5-

Land served as a target to train a superresolution mapping from GFS 

to ERA5-like fields, enhancing the fidelity of input features. 

2. Feature Engineering: 

After mapping GFS grids to each station, the local measurements and GFS 

forecasts were merged into a single training set. Key parameters driving 

forecast accuracy were identified, including helicity, surface temperature, 

precipitable water, and local station dew point. The inclusion of additional 

atmospheric variables ensured a rich feature space. 

3. Model Development: Baseline Approaches: 

○ Persistence: Using the last measured station value as a 24-hour 

forecast. 

○ Direct GFS: Using GFS forecast values directly without ML post-

processing. 

4. Machine Learning Models: 

○ CatBoost: A gradient boosting method on decision trees, chosen for 

its robustness, high accuracy, and ability to handle a large feature set 

efficiently. CatBoost also provided insights into feature importance 

through SHAP values, guiding further optimization. 

○ Multilayer Perceptron (MLP): A fully connected neural network 

capturing complex input-output relationships in a feedforward manner. 

○ LSTM Networks: Exploiting temporal sequences, LSTMs captured 

memory of recent station conditions, improving the understanding of 

evolving atmospheric patterns. 
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5. Bayesian Neural Fields (Exploratory): 

Bayesian Neural Fields treat spatial forecasting as learning a continuous 

function over space and time, with uncertainty quantification built-in. By 

defining a prior over function space and updating beliefs with observed data, 

these fields potentially provide better uncertainty estimates. The approach 

allows the model to better handle areas with sparse station coverage or 

rapidly changing conditions. Although still under exploration, Bayesian Neural 

Fields might refine forecasts where deterministic methods struggle. 

6. Incorporation of Estimated ERA5-Land Data: A U-Net model was trained to 

transform GFS forecasts into ERA5-Land-like estimates. The U-Net, with its 

encoder-decoder architecture and skip connections, effectively learned 

superresolution mapping. By feeding these U-Net-derived ERA5-Land 

approximations into the ML models, the training data became more spatially 

coherent and potentially closer to ground truth conditions. This step aimed to 

leverage ERA5’s high-resolution realism to enhance local forecasts without 

waiting for actual ERA5-Land data. 

Data & Equipment List 

● Data: 

○ HadISD station data (historical hourly measurements) 

○ GFS operational forecasts 

○ ERA5-Land reanalysis data (2015-2021 for U-Net training) 

● Equipment and Software: 

○ GPU-accelerated servers for deep learning (e.g., NVIDIA Tesla V100 

or A100) 

○ Python ecosystem (NumPy, Pandas, xarray, TensorFlow, PyTorch) 

○ CatBoost library for gradient boosting 

○ Docker or Singularity containers for reproducible computing 

environments 

○ Git-based version control and CI/CD pipelines for continuous model 

integration and testing 

● External Services: 

○ Institutional HPC clusters for parallel processing 

○ Secure cloud storage for data and model artifacts 

○ Visualization and BI dashboards to share results with stakeholders 

Detailed Implementation Plan 

● Phase 1 (2-3 Months): 

Data acquisition, cleaning, and synchronization. Implement scripts to align 

station data with corresponding GFS forecasts. Establish ERA5-Land and  
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GFS interpolation routines. Begin preliminary training of U-Net for 

superresolution mapping. 

● Phase 2 (3-4 Months): 

Train and refine ML models (CatBoost, MLP, LSTM) on GFS+station data. 

Conduct hyperparameter tuning and validate results on a held-out portion of 

2022 data. Begin integrating U-Net output into the ML frameworks. Initiate 

experiments with Bayesian Neural Fields to incorporate uncertainty modeling. 

● Phase 3 (1-2 Months): 

Evaluate final model configurations on 2023 validation data. Compare the 

baseline, ML-only, and ML+ERA5-Land approaches. Quantify the incremental 

benefits of Bayesian Neural Fields in terms of both accuracy and uncertainty 

representation. 

● Phase 4 (Ongoing): 

Operationalize the best-performing model, create APIs for external 

stakeholders (e.g., vineyard managers), and maintain a continuous 

improvement cycle. Monitor forecast accuracy in real-time, re-train models as 

new data accumulate, and iteratively incorporate feedback from users. 

Analysis of Needs of Stakeholder Groups 

● Farmers and Agricultural Managers: 

Require precise, location-specific forecasts to optimize labor and resource 

inputs. Smaller, family-run farms depend heavily on short-term forecasts to 

decide on delicate operations like frost protection or targeted irrigation. 

● Agricultural Advisories and Cooperatives: 

Need reliable predictions to guide member farms, offer best practice 

recommendations, and ensure synchronized harvesting and storage to 

prevent crop spoilage. 

● Policy Makers, Insurers, and Agricultural Economists: 

More accurate forecasts can inform policy decisions, risk assessments, and 

insurance premium calculations. They facilitate planning for weather-related 

disasters and support mitigation strategies. 

● Meteorological Services and Data Providers: 

Gain insights on how station-level data can refine global forecasts, potentially 

improving national and regional weather services. 

Experimental Results 

When tested on 2023 data, the advanced ML models significantly outperformed both 

the persistence and direct GFS baselines. For temperature forecasting, incorporating 

GFS and local station data reduced the mean absolute error (MAE) from over 2°C 

(GFS alone) to about 1.07°C (CatBoost). Similar improvements were observed for  
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dew point and wind speed. The introduction of ERA5-Land-like features from the U-

Net provided marginal improvements, especially in stable atmospheric conditions. 

Initial trials with Bayesian Neural Fields revealed promising avenues for capturing 

forecast uncertainty and spatial variability. Although not yet achieving substantial 

accuracy improvements beyond the deterministic CatBoost or MLP models, 

Bayesian Neural Fields displayed more robust performance in uncertain scenarios 

and offered interpretable uncertainty estimates. This probabilistic approach may 

prove invaluable as the operational context expands or when data quality varies. 

 

FINDINGS & CONCLUSION 

Discussion of the Results and Findings 

The key finding is that machine learning frameworks, leveraging both local station 

measurements and large-scale forecasts, can dramatically enhance local forecast 

accuracy. The CatBoost model proved particularly strong, likely due to its ability to 

handle complex interactions in a large feature space. Neural network approaches 

(MLP, LSTM) also provided improvements, especially in capturing temporal 

dynamics with LSTMs. The superresolution step using U-Net to incorporate ERA5-

Land features improved model fidelity slightly, indicating that data enhancement via 

reanalysis information is a valuable line of investigation. 

Bayesian Neural Fields offered an insight into the future of spatial weather 

modeling—moving beyond point forecasts into fields of predictions with quantified 

uncertainties. While not yet surpassing deterministic methods in raw accuracy, these 

probabilistic models open opportunities for risk-based decision-making. Stakeholders 

could, for example, assess not just the most likely forecast scenario but also the 

confidence or likelihood of extreme conditions. 

Further Improvements 

Future work could explore several enhancements: 

● Expanded Feature Sets: Incorporating soil moisture indices, vegetation 

indices (from satellite imagery), or topographical data might refine local 

predictions further. 

● Longer Lead Times and Multi-Horizon Forecasts: Extending beyond 24-

hour forecasts to multiple days while maintaining accuracy and employing 

uncertainty quantification could greatly expand the usefulness for farm 

planning. 

●  



                                                                       

trans4num INSPIRE Hackathon 2024 - Final Report on Challenge Nr. 4    

 

● Real-time ERA5-Land Proxies: Investigating alternate reanalysis products or 

improved nowcasting methodologies could yield better stand-ins for ERA5-

Land and reduce dependency on latent data. 

● Refinement of Bayesian Neural Fields: Further research into 

hyperparameter tuning, prior selection, and optimization strategies may 

uncover the full potential of Bayesian Neural Fields, making them competitive 

in both accuracy and robustness. 

● Integration with Operational Decision Systems: Embedding the improved 

forecasts into decision-support tools, mobile applications, or farm 

management software could facilitate immediate practical application, 

ensuring that the project’s benefits are realized at scale. 

In conclusion, this project demonstrated that combining local weather data, global 

forecasts, reanalysis-inspired features, and advanced ML or probabilistic models can 

significantly improve local weather predictions. The improvements support more 

informed agricultural decisions, ultimately strengthening resilience and promoting 

sustainable practices. The exploration of Bayesian Neural Fields stands as an 

innovative step towards more sophisticated, uncertainty-aware local weather 

forecasting, with the potential to further refine and enhance future predictive 

frameworks. 

 

 

 

 

 

 

 

 

 


